Math Virtual Learning

Probability and Statistics

April 23, 2020

Probability and Statistics
Lesson: April 23, 2020

Objective/Learning Target:

Students will be able to convert z-scores into percentages for a set of data

Let's Get Started!

Women's heights have a mean of 63.6 in . and a standard deviation of 2.5 inches. Find the z score corresponding to a woman with the following heights.
A. Height $=67^{\prime \prime}$
B. \quad Height $=72^{\prime \prime}$
C. Height $=44^{\prime \prime}$
D. What height would be 2 standard deviations below the mean?
E. What height has a z-score of 2.5 (Hint: Work Backwards with the Formula)

Let's Get Started!

Women's heights have a mean of 63.6 in. and a standard deviation of 2.5 inches. Find the z score corresponding to a woman with the following heights.
A. Height $=67$ " $\quad \frac{67-63.6}{2.5}=1.36$
B. \quad Height $=72^{\prime \prime} \quad \frac{72-63.6}{2.5}=3.36$
C. Height $=58$ " $\frac{58-63.6}{2.5}=-2.24$
D. What height would be 2 standard deviations below the mean? 58.6 inches
E. What height has a z-score of 2.5 (Hint: Work Backwards with the Formula)

$$
\begin{array}{rll}
2.5=\frac{x-63.6}{2.5} & ---->6.25=x-63.6 & \text { (multiply both sides by 2.5) } \\
& ---->x=69.85 \text { in. } & \text { (add } 63.6 \text { to both sides) }
\end{array}
$$

What we already know...

Now that we know how to calculate a Z-Score using the formula

AND we know how to put that answer onto the graph:

Z-Score to Percent...

Now we can answer questions about percentages using a Z-Score to Percent Chart

You will want to open or print this chart for referencing during this lesson

Z-Score to Percent Chart

The first thing you will notice is that there are 2 charts. One has negative values and the other has positive values.

When your Z-Score is above the Mean you will use the positive chart

When your Z-Score is below the Man you will use the negative chart

Let's start with the first example from the Bell Ringer...

Women's heights have a mean of 63.6 in . and a standard deviation of 2.5 inches. Find the z score corresponding to a woman with the following heights.

$$
\text { A. } \quad \text { Height }=67^{\prime \prime} \quad \frac{67-63.6}{2.5}=1.36
$$

We want to know what percent of the women surveyed have a height of 67" or less
(We know that it will be more than 50% because the Z-Score (1.36) is on the right side of the mean since it is a positive Z-Score.)

To find the exact \%, take your Z-Score (1.36) and look it up on the Z-Score to Percent Chart that I told you to open or print from Slide 6

Here it is again for you: Z-Score to Percent Chart
Watch this short video on how to read/use the chart to find your percentage answer:

Reading a Z-Score to Percent Chart

Let's start with the first example from the Bell Ringer...

Women's heights have a mean of 63.6 in . and a standard deviation of 2.5 inches. Find the z score corresponding to a woman with the following heights.
A. Height $=67$ "

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	0.06	0.07	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
$\mathbf{0 . 0}$.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
$\mathbf{0 . 1}$.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
$\mathbf{0 . 2}$.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
$\mathbf{0 . 3}$.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
$\mathbf{0 . 4}$.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
$\mathbf{0 . 5}$.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
$\mathbf{0 . 6}$.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
$\mathbf{0 . 7}$.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
$\mathbf{0 . 8}$.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
$\mathbf{0 . 9}$.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
$\mathbf{1 . 0}$.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
$\mathbf{1 . 1}$.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
$\mathbf{1 . 2}$.8849	.8869	.8888	.8907	.8925	.8944	8962	.8980	.8997	.9015
$\mathbf{1 . 3}$.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
$\mathbf{1 . 4}$.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
$\mathbf{1 . 5}$.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
$\mathbf{1 . 6}$.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545

***Keep in mind that the chart AIWAYS gives you the \% on the left or the \% LOWER than your data point. This is very important to remember when using this chart!

Let＇s do Example 2 from the Bell Ringer．．．

Women＇s heights have a mean of 63.6 in ．and a standard deviation of 2.5 inches．Find the z score corresponding to a woman with the following heights．
B． Height $=72^{\prime \prime} \quad \frac{72-63.6}{2.5}=3.36$
Find the \％of women shorter than 72＂
From the chart，we get .9996 or 99.96%（so almost everyone is shorter than 72 in ．）

So what \％of the women are taller than 72＂

z	0.0	0.91	000	4 mm	404	408	408	0.97	028	0.08
00	5000	5010	5000	5120	5150	5739	5208	508	5019	5×5
0.1	5598	5438	5478	． 5517	5557	5936	535	5605	5014	5053
02	5935	5882	5871	5970	5548	5387	8006	6064	¢123	（14）
03	6173	k21］	5235	A23	4371	483	300	${ }^{864} 4$	840	${ }^{6817}$
0.4	594	3081	$4{ }^{488}$	10654	kw	A ${ }^{5}$	研 72	8608	504	H39
0.5	5015	${ }^{6350}$	6585	． 7019	3054	338	． 7123	T15	7130	3224
0.6	3257	． 2381	3324	．357	339	242	．7154	7688	3517	3549
0.7	358	3611	382	383	734		7ns4	ग\％	32	385
08	נ\％	． 810	3 m	337	305	\＄103	\％${ }^{0}$	808	11\％	818
09	8159	8158	1812	．3238	2254	2333	8315	8340	1395	8859
1.0	${ }^{6} 413$	8438	8461	3465	${ }^{2558}$	8531	${ }^{83} 8$	857	8599	8621
1.1	864	3＊5	4688	3708	473		370	8050	885	4838
12	（649	楼	888	337	825	234	解	\％ 86	399	S015
13	5092	5049	． 5055	3082	5089	． 315	9131	9147	9052	917
1.4	． 9192	5000	． 5232	2935	9251	3305	9279	9058	5938	5979
15	． 9022	Sen 5	5357	330	5302	334	900	9718	5423	5441
15	．958	206	． 8984	3085	\＄458	\＄205	\＄815	sks	S63	\＄845
1.7	5854	Sces	． 9573	． 3532	9591	． 3599	．9508	S61E	9625	5638
18	5641	9645	5656	．3054	9671	3078	． 9508	9685	Se93	5906
19	9713	975	5728	．338	． 9338	3244	9350	9158	5381	909
20	972	971	508	小3	508	731	sw	Ste	4012	H017
21	5621	Stas	5830	3834	5838	． 3802	388	9650	． 3654	Sts
22	5651	5684	5858	． 9871	5875	3878	9881	5684	5897	Seso
23	5 ses	Sese	5e38	4301	5504	3598	200	S011	5943	S678
24	\＄614	sax	\＄022	＊35	\＄627	\＄120	3s31	\＄802	． 183	8008
25	5588	980	． 9941	3943	5945	3955	9948	994	9951	955
26	9551	9555	9956	． 9357	． 9859	4950	．9361	9662	5963	9664
2.7	9865	9688	9807	， 3 30	\＄869	． 2970	2971	9002	5973	． 9894
21	\＄934	sans	Sus	m\％	san	स冈	＊\％9	909	． 510	864
29	5681	5602	5982	938	S904	3394	9955	965	5935	5665
3.0	5967	5581	9987	． 9338	5s89	2394	9369	9599	5939	5980
3.1	\＄550	Sest	9931	3331	5932	392	9mp	9685	923	9653
12		\＄600	5094	mas	\＄064	1 mb	＊＊	905	5035	\＄05s
13	9695	9908	9995	3935	9986	－10．	3936	9585	5996	．5067
3.4	9887	9881	98	99	5989		9997	gess	9937	9688

$100 \%-99.96 \%($ shorter $)=.04 \%$（taller） | 3.2 | .9993 | .9993 | .9994 | .9994 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3.3 | .9995 | .9995 | .9995 | .9996 | |
| | 3.4 | .9997 | .9997 | .9997 | .9997 |

Now let's combine Part A and Part B for a new

 question:Women's heights have a mean of 63.6 in . and a standard deviation of 2.5 inches. Find the z score corresponding to a woman with the following heights.
A. Height $=67 \prime \quad \frac{67-63.6}{2.5}=1.36 \quad 91.31 \%$ shorter
B. Height $=72 " \frac{72-63.6}{2.5}=3.36 \quad 99.96 \%$ shorter

What \% of women are BETWEEN 67" and 72"?

We only care about the \% between 67 and 72, so we need to subtract the double shaded area (\%).

8.65\% ----------------------->

Your turn...

Women's heights have a mean of 63.6 in . and a standard deviation of 2.5 inches. Find the z score corresponding to a woman with the following height.
C. Height $=58$ "

1. What $\%$ of women are shorter than 58 "
2. What $\%$ of women are taller than 58 "
3. What \% of women are between $58^{\prime \prime}$ and $67^{\prime \prime}$

Your turn...

Women's heights have a mean of 63.6 in . and a standard deviation of 2.5 inches. Find the z score corresponding to a woman with the following heights.
C. Height $=58$ " Z-Score $=-2.24 \quad$ (Remember to use the negative side of the chart)

1. What $\%$ of women are shorter than 58 "
2. What \% of women are taller than 58 "
3. What $\%$ of women are between 58 " and 67 "
.0125 (from chart) $=1.25 \%$ 100\%-1.25\% = 98.75\%

$91.31 \%-$	$1.25 \%=$	90.06%
$67 \% \%$	$58 \% \%$	$\%$ Between 58 and 67

